CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

To Specify Surfaces of Revolution with Pointwise 1-type Gauss Map in 3-dimensional Minkowski Space

In this paper, by the studying of the Gauss map, Laplacian operator, curvatures of surfaces in R 1 and Bour’s theorem, we are going to identify surfaces of revolution with pointwise 1-type Gauss map property in 3−dimensional Minkowski space. Introduction The classification of submanifolds in Euclidean and Non-Euclidean spaces is one of the interesting topics in differential geometry and in this...

متن کامل

Helicoidal Surfaces and Their Gauss Map in Minkowski 3-space

The helicoidal surface is a generalization of rotation surface in a Minkowski space. We study helicoidal surfaces in a Minkowski 3-space in terms of their Gauss map and provide some examples of new classes of helicoidal surfaces with constant mean curvature in a Minkowski 3-space.

متن کامل

L_1 operator and Gauss map of quadric surfaces

The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...

متن کامل

The Gauss Map for Surfaces: Part 1. the Affine Case

Let M be a connected oriented surface and let G'2 be the Grassmannian of oriented 2-planes in Euclidean (2 + c)-space. E2 + l. Smooth maps t: M -» (7f are studied to determine whether or not they are Gauss maps. Both local and global results are obtained. If í is a Gauss map of an immersion X: M -» E2 + 1, we study the extent to which / uniquely determines X under certain circumstances. Let X: ...

متن کامل

Gauss map computation for free-form surfaces

The Gauss map of a smooth doubly{curved surface characterizes the range of variation of the surface normal as an area on the unit sphere. An algorithm to approximate the Gauss map boundary to any desired accuracy is presented, in the context of a tensor{product polynomial surface patch, r(u;v) for (u; v) 2 0; 1 ] 0; 1 ]. Boundary segments of the Gauss map correspond to variations of the normal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2013

ISSN: 1015-8634

DOI: 10.4134/bkms.2013.50.4.1345